
 International Journal of Engineering Research ISSN: 2348-4039
& Management Technology
September-2015 Volume 2, Issue-5

 Email: editor@ijermt.org www.ijermt.org

Copyright@ijermt.org Page 111

Challenges of Error Recovery Techniques for Mobile Distributed Systems

Anil Kumar

Department of Computer Science & Engineering

HCTM, KAITHAL, HARYANA (INDIA)

ABSTRACT:

The emergence of mobility in a distributed system, has led to the start of new era of computing. Recent

technological advances in mobile or hand-held devices and wireless technology have made the mobile

computing affordable. Due to new emerging characteristics of mobile node, mobile computing

environment is more error prone as compared to fixed infrastructure. In this paper we present failure

recovery techniques, issues and challenges with respect to mobile distributed systems.

KEYWORDS: Mobile, checkpoint, MSS, MH.

I. INTRODUCTION:

A Mobile Computing System is a distributed system where some of processes are running on Mobile

Hosts (MHs) [5]. The term “Mobile” means able to move while retaining its network connection. To

communicate with MHs, mobile support stations (MSSs) are added. An MSS communicates with other

MSSs by wired networks, but it communicates with MHs by wireless networks refer to fig.1.

Fig. 1 Working Block Diagram Mobile Distributed System (MDS)

A cell is a geographical area around an MSS in which it can support an MH. An MH can change its

geographical position freely from one cell to another cell or even area covered by cell. At any given

instant of time an MH may logically belong to only one cell ; its current cell defines the MH’s location

and the MH is considered local to MSS providing wireless coverage in the cell. An MSS has both wired

and wireless links and acts as an interface between static network and a part of mobile network. Static

network connects all MSSs. A static node that has no support to MH can be considered as an MSS with

no MH. Critical applications are required to execute fault-tolerance on such system [17]. The static

network provides reliable, sequenced delivery of messages between any two MSSs, with arbitrary

message latency.

MHs

 WIRED NETWORK
MSS

MSS

Wireless Cell

MSS

MSS

FH

mailto:editor@ijermt.org
http://www.ijermt.org/

 International Journal Of Engineering Research & Management Technology ISSN: 2348-4039
 Email: editor@ijermt.org September- 2015 Volume 2, Issue-5 www.ijermt.org

Copyright@ijermt.org Page 112

1.1 MOBILE COMMUNICATION CHARACTERISTICS AND THEIR IMPLICATIONS:

Mobile data communication has several characteristics that must be taken into consideration when

developing any failure recovery method. These characteristics are as following:

1. Peer-to-peer client/server communication: The communication pattern between an application in

fixed network and its peer application on MH is peer-to-peer; which means that the communication

can be initiated by either side (MH or MSS).

2. Real time communication: Real time issue arises when there are actions that must be completed

within a specified amount of time otherwise they become useless or even harmful after that. In this

context, the entity that initiates requests should receive replies within a specified period of time

otherwise timeouts occur. The real time aspects of mobile communication originate from both the end

user application and the physical system.

3. High message rate: The number of messages received and sent per unit time is high Therefore; any

recovery technique that uses message logging has to deal with two particular problems i.e. overhead

and storage.

4. Distributed service architecture: The fixed network is distributed over a large geographic area to

provide mobility. It is normally that several applications running on different nodes cooperate

together to complete a single service for an MS. This distributed architecture will affect the selection

of fault tolerance approach

5. Scarce radio resources: The limited bandwidth of the air interface underlines the need of efficient

communication between mobile stations and fixed network.

2. FAULT TOLERANCE SYSTEM AND ERROR RECOVERY TECHNIQUES:

A fault is anomalous physical condition which could lead to system failure. Failure can be classified in

following two categories:

 HARD FAILURE:

Hard failure implying permanently failure or complete loss of connectivity of node These types of

failures are non-voluntary in nature and processes stops any further actions forever such as falls, breaks,

lost or stolen.

 SOFT FAILURE:

Soft failures do not permanently damage the node. In such case, MH informs to MSS prior to its

occurrence such as battery discharge, disconnections or operating crashes. [15]

Fault tolerance is survival attribute of system and fault tolerant techniques enable a system to perform

tasks in the presence of faults which involves fault detection, fault location, fault containment and fault

recovery.

Failure recovery is a process that involves restoring an erroneous state to an error-free state. Recovery

from errors in fault tolerant systems can be characterized as either rollback or roll forward refer to fig. 2].

2.1 FORWARD ERROR RECOVERY:

When system detect the error, forward error recovery technique takes the system state at that time and

correct it and to be able to move forward. Hence, in this technique the nature of error and damaged

caused by faults must be completely and accurately assessed, which make it possible to remove those

errors in the process state and enable the process to move forward [26]. This approach is not used in

distributed and mobile systems as accurate assessment of all the faults may not be possible.

Replication implements roll-forward mechanism where the entity (mainly a server application) is

replicated to establish a group of replicas and in the event of the failure of one entity, the other replicas

can take over and continue processing requests. Active replication where all server replicas run

concurrently and passive replication in which one member of the server group is designated as the

primary, are two best known replication approaches

mailto:editor@ijermt.org

 International Journal Of Engineering Research & Management Technology ISSN: 2348-4039
 Email: editor@ijermt.org September- 2015 Volume 2, Issue-5 www.ijermt.org

Copyright@ijermt.org Page 113

2.2 BACKWARD ERROR RECOVERY:

Backward error recovery or checkpoint restart has been largely employed as a fault tolerant mechanism

for DSs. In this technique, system rollback to some earlier state, correct it and roll forward from here.

Thus, backward error recovery is more general recovery mechanism [25]. Backward error recovery can

be log based or checkpoint based which is explained in the next sections.

 Log-based Rollback Recovery Mechanism

In log-based recovery, sending message history of processes since last checkpoint, are kept in main

memory [16]. In case of a failure, a process can ask fault-free processes the needed messages. “Spooling”

can be performing if volatile message logging takes too much memory space. In message logging

protocols, each process periodically records its LS and logs the messages that it receives after having

recorded that state on stable storage. When a process crashes, a new process is created in its place. The

new process is given the appropriate recorded LS, and then the logged messages are replayed in same

order as the process originally received them. All message-logging protocols require that once a crashed

process recovers, its recovered state is consistent with the states of the other processes [20]. There are

three types of logging protocols.

 PESSIMISTIC LOGGING:

The pessimistic logging approach does not require any synchronization between processes but received

messages are logged synchronously. During logging, it blocks the receiver until the message is logged to

a stable storage. A process Pi never sends a message until it knows that all messages received and

processed so far are logged. In such way it guaranteed that orphan is never created in pessimistic logging

approach. During recovery all messages received in the time between the latest checkpoint and the fault

are replayed to it from the stable storage in the same order as they were received before the fault [14].

 OPTIMISTIC LOGGING:

In optimistic message logging approach, message may not be logged immediately. The receiver continues

its normal actions. The messages are logged at some point of time during idle time of the system [12].

The application does not block, and the determinants are spooled to stable storage asynchronously. This

approach has less average cost of logging a message in the comparison of pessimistic approach

(Costopti_log<Costpessi_log) [12]. It reduces failure free overhead, but complicates the recovery process.

Min-process with Mutable/

induced/useless

checkpoints

All-process Min-

process

Blocking

Time based

Error Recovery

Backward Error Recovery Forward Error Recovery

Checkpoint based Log-based

Uncoordinated Coordinated Communication

induced

Non-blocking Index based Model based

Pessimistic Optimistic Causal

Replication based

N-Version Programming

Fig. 2. A partial view of Error Recovery Techniques

mailto:editor@ijermt.org

 International Journal Of Engineering Research & Management Technology ISSN: 2348-4039
 Email: editor@ijermt.org September- 2015 Volume 2, Issue-5 www.ijermt.org

Copyright@ijermt.org Page 114

 CAUSAL LOGGING:

Causal logging approach is a mix of the optimistic (orphan free) and pessimistic logging (non-blocking)

approach which avoid the orphan and blocking. In this approach, dependency information is piggybacked

on application messages and this dependency information including with message contents are logged in

the volatile memory of sender [12]. Hence, this approach is non-blocking, orphan free and has only one

overhead of storing a message in volatile memory.

Checkpointing and Recovery Mechanism

Checkpointing and rollback recovery is an efficient error recovery mechanism used in DSs [1]. It enable a

system to tolerate failures by periodically saving the entire state during failure free execution and rolling

back to the saved state if a failure occur. It works on fail-stop model and mainly has two phases: (a)

saving a checkpoint in stable storage. (b) Checkpoint recovery following the failure.

Fig. 3 Checkpoint and Recovery

During first phase of checkpointing approach, the state of each process in the system is periodically saved

on stable storage, which is called a checkpoint of a process. To recover from a failure refer to fig. 3, the

system restarts its execution from a previous error-free, CGS [4]. In a DS, since the processes in the

system do not share memory, a global state of the system is defined as a set of local states, one from each

process. A global state is said to be “consistent” if it contains no orphan message; i.e., a message whose

receive event is recorded, but its send event is lost [4]. Three flavors of checkpointing based recovery

protocols are coordinated checkpointing, uncoordinated checkpointing and communication induced

checkpointing (CIC).

 COORDINATED CHECKPOINTING:

Coordinated checkpointing is a commonly used technique for fault tolerant in mobile DSs. In coordinated

approach it is assumes that a single process which is know as initiator, invokes the checkpointing

algorithms to determining the CGC. In this approach processes communicate and synchronize through

system messages before taking checkpoint and coordinate their checkpointing actions in such a way that

checkpointing approach yields a CGS. Mostly it follows two-phase commit structure [2], [19], [21], [30].

In the first phase, processes take tentative checkpoints and in the second phase, these are made

permanent. The main advantage is that only one permanent checkpoint and at most one tentative

checkpoint is required to be stored. In case of a fault, processes rollback to last checkpointed state. A

permanent checkpoint cannot be undone. In some approaches initiator of the checkpointing process

forces the dependent processes (minimum processes). The coordinated checkpointing protocols can be

classified into two types: blocking and non-blocking. In blocking algorithms, as mentioned above, some

blocking of processes takes place during checkpointing [2]. In non-blocking algorithms, no blocking of

processes is required for checkpointing [19], [21]. The coordinated checkpointing algorithms can also be

classified into following two categories: minimum-process and all process algorithms. In all-process

coordinated checkpointing algorithms, every process is required to take its checkpoint in an initiation

[19], [21]. In minimum-process algorithms, minimum interacting processes are required to take their

checkpoints in an initiation [2]. In coordinated approach CGS is achieved during run-time, while in the

independent approach the determination of a consistent recovery line was left to the recovery phase,

which could result in some rollback propagation [28]. It does not suffer from rollback propagations.

Rollback

Recovery

Failure Computing

C
h

e
ck

p
o

in
te

d

St
at

e

R
e

ce
n

t

C
h

e
ck

p
o

in
te

d

St
at

e

mailto:editor@ijermt.org

 International Journal Of Engineering Research & Management Technology ISSN: 2348-4039
 Email: editor@ijermt.org September- 2015 Volume 2, Issue-5 www.ijermt.org

Copyright@ijermt.org Page 115

 UNCOORDINATED CHECKPOINTING:

In independent checkpointing, processes do not synchronize their checkpointing activity and processes

are allowed to records their local checkpoints in an independent way [18], [20], [28], [31]. After a failure,

system will search a CGS by tracking the dependencies from the stable storage. The main advantage of

this approach is that there is no need to exchange any control messages during checkpointing. But this

requires each process to keep several checkpoints in stable storage and there is no certainty that a global

consistent state can be built. The main disadvantage of uncoordinated approach is the domino-effect [20].

In [Fig. 4], processes P1 and P2 have independently taken a sequence of checkpoints. The interleaving of

messages and checkpoints leave no consistent set of checkpoints for P1 and P2, except the initial one at

{C10, C20). Consequently, after P1 fails, both P1 and P2 must roll back to the beginning of the computation.

Fig. 4 Domino-effect

It should be noted that global state {C11, C21} is inconsistent due to orphan message m1. Similarly,

global state {C12, C22} is inconsistent due to orphan message m4. The possibility of the Domino effect

may cause the loss of large amount of useful work and also increases the checkpointing overheads.

Rollback propagations also make it necessary for each processor to store multiple checkpoints,

potentially leading to a large storage overhead.

 COMMUNICATION-INDUCED CHECKPOINTING:

In the CIC approach, a GC is similar to the approach of coordinated checkpointing while rollback

propagation can be avoided by forcing additional un-coordinated local checkpoint in processes [11], [26].

Protocols piggyback control information on application messages, thereby, avoids addition of explicit

control message, to the computation, during checkpoint creation [10]. Quasi-synchronous checkpointing

algorithms can be classified into two categories [20]. First is Model based checkpointing in which

checkpointing protocol tries to avoid the domino effect by relying on preventing patterns of

communications and checkpoints that could result in inconsistent states among the existing checkpoints

and second is Index based checkpointing where a sequence number is assigned to local checkpoint local

checkpoint. These assigned sequence number monotonically increasing after every checkpoint, such that

the checkpoints having the same index at different processes form a consistent state. These index

numbers are piggybacked on application an message which helps the receiver in deciding when to take

snapshot. Index based checkpointing protocol, can be used with time coordination [6] to reduce the

number of total checkpoints.

2.3 N-VERSION PROGRAMMING:

N-version programming [9] uses design diversity approach and it is defined as the independent

generation of N>=2 functionally equivalent programs from the same initial specification. Independent

generation of programs means that the programming efforts are carried out by N development teams that

do not interact with respect to the programming process. The initial specification is a formal specification

in a specification language. The goal of the initial specification is to state the functional requirements

completely and unambiguously, while leaving the choice of implementations to the N programming

efforts. N-version programming assumes that all programs contain faults, but it relies on the fact that the

number of hidden faults will be small and that they will be in different locations in each of the versions.

Wherever possible, different algorithms, programming languages and compilers are used in each separate

effort.

P1

P2

Failure C10

C21 C22 C23

C11 C12 C13

m0

m1
m3 m4 m5

m6

 Checkpoints C20

mailto:editor@ijermt.org

 International Journal Of Engineering Research & Management Technology ISSN: 2348-4039
 Email: editor@ijermt.org September- 2015 Volume 2, Issue-5 www.ijermt.org

Copyright@ijermt.org Page 116

3. LIMITATIONS OF EXISTING ERROR RECOVERY TECHNIQUES :

In this section, we explain the general limitations of these techniques and leave the specific ones

concerning the mobile environment to the next chapter.

3.1 BACKWARD ERROR RECOVERY HAS TWO ASSUMPTIONS:

 Transient faults: Without assuming that faults are transient, the faulty process will certainly fail again

at exactly the same place. The faulty process will roll back to the latest saved state and then continues

its execution (exactly the same program instructions are repeated) to restore the pre-failure state before

it hits the error again. Note that the faulty entity may or may not reactivate the permanent fault

depending on the latest checkpoint time, but it will certainly hit the error.

 Good checkpoints: Rollback assumes that only good data is saved to a stable storage and this implies

that the fail-stop property must be upheld. In other words, the saved states must not contain the error

that is caused by the transient fault.

3.2 FORWARD ERROR RECOVERY HAS ALSO TWO ASSUMPTIONS:

 Transient fault: Replication approach depends on the assumption that most of the software faults are

transient. If this assumption is not applied, then all members of the replica group will fail at the same

time, for example because of a permanent software bug.

 Fail-stop: Most of the replication techniques assume fail-stop property, i.e. an entity works correctly

or stops functioning completely. This assumption can be relaxed at the cost of more complex voting

algorithm and an increase in the number of replicas.

3.3 N-VERSION ERROR RECOVERY TECHNIQUES ASSUMPTIONS:

N-version or the use of diversity has no technical limitation in general, but its main limitation is its high

cost both with respect to implementation and maintenance. There is a big discussion whether it is better

to concentrate on developing one reliable version rather than less reliable multi-versions. The two

assumptions about the nature of fault fail-stop and transient are dated back to the early 1980’s and they

can be probably true for some relatively simple applications. But, these assumptions will simply not hold

for modern distributed communication applications. Everyday experience with communication

applications has shown that many (if not most) of the software faults are permanent and they are

reproducible, but they require rare sequence of events to be activated. This can be explained with the fact

that it is almost impossible and not realistic to test every path and combination in these large and complex

applications [3],[7].

4. CHALLENGES FOR IN DESIGNING ERROR RECOVERY TECHNIQUES FOR MDSS :

The existence of mobile nodes in Distributed Systems introduces new challenges that need proper

handling while designing a checkpointing algorithm for such systems. MHs are integral part of mobile

computing environment which frequently changes its locations. The portable computers can get

arbitrarily small, down to the size of; say a walkman, a pocketbook, a watch, or a ring. The implications

of portability are small size and weight and dependent on battery. Also wireless communication is

susceptible to high failure rate and transmission interference or interception. This is a fixed network

consisting of base stations, routers, gateways, resource management, mobility management units, etc. that

exist to support the operation of the wireless mobile stations. The fixed network takes the overall

coordination and control of the communication with the MSs and it uses peer-to-peer based protocols to

achieve that. Due to the unique characteristics of mobile devices and wireless connectivity

communication there are following issues that complicate the design checkpointing algorithms for MDS

and need to handle more carefully.

 MOBILITY:

Changes in location of MH complicates routing of messages. Messages sent by a node to another node

may have to be rerouted because the destination node (MH) disconnected from old MSS and now

connected to new MSS. Checkpointing schemes that send control messages to MHs, will first need to

locate the MH within the network, and thereby incur a search overhead [13], [14].

mailto:editor@ijermt.org

 International Journal Of Engineering Research & Management Technology ISSN: 2348-4039
 Email: editor@ijermt.org September- 2015 Volume 2, Issue-5 www.ijermt.org

Copyright@ijermt.org Page 117

 LIMITED BANDWIDTH:

There is a wireless communication between MHs and their local MHH. In terms of data rate, the data

rates of infrared networks range from 19.2 kbps to 1 Mbps and that for radio networks is 19.2 kbps.

Wireless LANs have a data rate of 1 to 2 Mbps and that can be extended to 10 Mbps. Adaptive

communication protocols have been proposed to compensate for the slow speed of some existing mobile

communication links and to save the communication cost by reducing link usage. Low bandwidth

constraints are satisfied by reducing the number of system messages required to collect a consistent

snapshot [27].

 FREQUENT DISCONNECTION:

in mobile computing all the MHs are connected to their local MSS through wireless link and this

connection is temporary with periods of disconnection. MHs may disconnect from the network

temporarily or permanently [27].

 LACK OF STABLE STORAGE:

Due to vulnerability of mobile node to catastrophic failures e.g. loss, theft or physical damage, the disk

storage on an MH cannot be considered as the stable storage. A reasonable solution is to utilize the stable

storage at MSSs to store checkpoints of the MHs. Thus, to take a checkpoint, an MH has to transfer a

large amount of data to its local MSS over the wireless network [1].

 SMALL STORAGE CAPACITY:

Small size and weight of a mobile computer means restricted memory size, small storage capacity and

small user interface. So large amount of checkpointed data are not stored on local MHs memory

 LIMITED BATTERY LIFE:

The battery at the MH has limited life and there is not any permanent source of charging during moving

from one location to other locations. Therefore energy conservation checkpointing techniques are

required for MDS.

5. REQUIREMENTS FOR FAILURE RECOVERY IN MOBILE INFRASTRUCTURE :

There are following important requirements for failure recovery in mobile environment [3],[7].

1. High availability

2. Low overhead without real-time drawbacks

3. No assumptions on faults

4. Cost effective

5. Low Coordination Overhead

6. Low Context-Saving overhead

6. CONCLUSION :

In this paper we presents different issues and challenges for MDSs which provides high availability of

services as a user can access the information from “anywhere” or “anytime” but it is less reliable

compares to distributed systems. A system is said to be reliable if it can continue to provide the correct

services, in the even of failure also. In mobile system, a MH is more error prone compares to fixed host

(FH) as it frequently changes its location. A single failure in mobile distributed systems (MDSs) can

affects a large number of users and computation. As a result, the mobile systems need to be able to

tolerate faults to increase its reliability. Due to the mobility of nodes and wireless connectivity, MDSs

have different characteristics, for example, week wireless connectivity, frequently disconnection, lack of

stable storage on mobile nodes, finite power source, and vulnerable to physical damages that makes the

already existing distributed fault tolerance algorithms unsuitable. Hence there is a great need to design an

efficient checkpoint and faults tolerance protocols for MDS that specifically focuses on lessening power

consumption, effective using the limited available memory and utilizing the bandwidth effectively.

REFERENCES:

mailto:editor@ijermt.org

 International Journal Of Engineering Research & Management Technology ISSN: 2348-4039
 Email: editor@ijermt.org September- 2015 Volume 2, Issue-5 www.ijermt.org

Copyright@ijermt.org Page 118

1. Acharya A. and Badrinath B.R., “Checkpointing Distributed Application on Mobile Computers”, in the Proc. of the 3rd Int’l

Conf. on Parallel and Distributed Information Systems, pp. 73-80, Sept. 1994.

2. Koo R. and Toueg S., “Checkpointing and Roll-Back Recovery for Distributed Systems”, IEEE Trans. on Software Engg.,

Vol.13, No.1, pp.23-31, Jan. 1987.

3. M. Zib Beiroumi, High Available Mobile Infrastructure Applications, proceedings of the 16th IEEE International

Symposium on Software Reliability Engineering (ISSRE 2005), pp. 181-190, Chicago, USA, Nov, 2005.

4. Cao G. and Singhal M., “On Coordinated Checkpointing in Distributed Systems”, IEEE Trans. on Parallel and Distributed
Systems, Vol. 9, No.12, pp. 1213-1225, Dec.1998.

5. Cao G. and Singhal M., “Mutable Checkpoints: A New Checkpointing Approach for Mobile Computing Systems”, IEEE

Trans. on Parallel and Distributed Systems, Vol. 12, No.2, pp. 157-172, Feb. 2001.

6. Singh A.K., “On Mobile Checkpointing using Index and Time Together”, World Acdemy of Science, Engineering and

Technology, Vol 32, pp. 144-151, 2007.

7. M. Zib Beiroumi, Recovery of Infrastructure Software in the Mobile Network, NTS-17, 17th Nordic Teletraffic Seminar,

pp. 137-148, August 25, 2004, Fornebu, Norway.

8. Changheng Shao, Fengjing Shao, Xiaoning Song, and Rencheng Sun, “A Dynamic Checkpointing and Rollback Recovery

Solution Based on Task Switching”, in the Proc. of the Int’l Symp. on Intelligent Information Systems and Applications

(IISA’09) Qomgdap. P.R. China, pp. 354-358, Oct. 28-30, 2009.

9. A. Avizienis and L. Chen, On the implementation of N-version programming for software fault tolerance during execution,
Proceedings of the IEEE COMPSAC 77, pages 149–155, Nov 1977.

10. Tsai J., “An Efficient Index-Based Checkpointing Protocol with Constant size Control Information on Messages,” IEEE

Trans. on Dependable and Secure Computing, Vol. 2, No. 4, pp. 278-296, Oct-Dec 2005.

11. Najib A. Kafahi, Said AI-Bokhitan and Ahmed AI-Nazer, “On Disk-based and Diskless Checkpointing for Parallel and

Distributed Systems”, An Empirical Analysis, Information Technology Journal, Vol. 4(4), pp. 367-376, 2005.

12. Mandal P.S. and Mukhopadhyaya K., “Performance Analysis of Different Checkpointing and Recovery Schemes using

Stochastic Model” Journal of Parallel and Distributed Computing, No.66, pp. 99-107, 2006.

13. Awerbuch B. and Peleg D., “Concurrent Online Tracking of Mobile Users”, in the Proc. of the ACM Symp. on Comm.,

Arch. and Protocols SIGCOMM, 1991.

14. Acharya A., “Structuring Distributed Algorithms and Service for networks with Mobile Hosts”, Ph. D. Thesis, Rutgers

University, 1995.

15. Singhal M. and Shivaratri Niranjan G., “Advance Concept in Operating System” Tata Mcgraw-Hill, 2005.
16. Alvisi, Lorenzo and Marzullo, Keith, “Message Logging: Pessimistic, Optimistic, Causal, and Optimal”, IEEE Trans. on

Software Engineering, Vol.24, No.2, pp.149-159, Feb.1998.

17. Adnan Agbaria, William H. Sanders, “Distributed Snapshots for Mobile Computing Systems”, in the Proc. of the Second

IEEE Annual Conf. on Pervasive Computing and Communications (Percon ’04), pp. 1-10, 2004.

18. Bhargava B. and Lian S.R., “Independent Checkpointing and Concurrent Rollback for Recovery in Distributed Systems-An

Optimistic Approach”, in the Proc. of the 17th IEEE Symp. on Reliable Distributed Systems, pp. 3-12, 1998.

19. Candy K.M. and Lamport L., “Distributed Snapshots: Determining Global State of Distributed Systems”, ACM Trans. on

Computing Systems, Vol. 3, No. 1,pp. 63-75, Feb.1985.

20. Elnozahy E.N., Alvisi L., Wang Y.M. and Johson D.B., “A Survey of Rollback- Recovery Protocols in Message-Passing

Systems”, ACM Computing Surveys, Vol.34, No.3, pp. 375-408, 2002.

21. Elnozahy E.N., Johson D.B. and Zwaenepoel W., “The Performance of Consistent Checkpointing”, in the Proc. of the 11th
Symp. on Reliable Distributed Systems, pp. 39-47, Oct. 1992.

22. Elnozahy and Zwaenepoel W, “Manetho: Transparent Roll-back Recovery with Low-overhead, Limited Rollback and Fast

Output Commit”, IEEE Trans. on Computers, Vol. 41, No. 5, pp. 526-531, May 1992.

23. Elnozahy and Zwaenepoel W, “On the Use the Implementation of Message Logging”, in the 24th Int’1 Symp. on Fault

Tolerant Computing, IEEE Computer Society, pp. 298-307, June 1994.

24. Johnson D., “Distributed Systems Fault Tolerance Using Message Logging and Checkpointing”, Ph. D. Thesis, Rice Univ.,

Dec.1989.

25. Manivannan D., Netzer R.H. and Singhal M., “Finding Consistent Global Checkpoints in a distributed computation”, IEEE

Trans. on Parallel & Distributed Systems, Vol.8, No.6, pp.623-627, June 1997.

26. Pardhan D.K., and Vaidya N., “Roll-forward Checkpointing Scheme: Concurrent Retry with Non-dedicated Spares”, in the

Proc. of the IEEE Workshop on Fault-Tolerant Parallel and Distributed System, pp. 166-174, July 1992.
27. Prakash R. and Singhal M., “Low-Cost Checkpointing and Failure Recovery in Mobile Computing Systems”, IEEE Trans.

on Parallel and Distributed Systems, Vol. 7, No.10, pp1035-1048, Oct. 1996.

28. Storm R. and Temini S., “Optimistic Recovery in distributed Systems”, ACM Trans. on Computer Systems, pp. 204-226,

Aug. 1985.

29. Sistla A.P. and Welch J.L., “Efficient Distributed Recovery Using Message Logging”, in the Proc. of the 18th Symp. on

Principles of Distributed Computing”, pp. 223-238, Aug. 1989.

30. Gupta B., Rashimi S., Rishad A. Rias, and Guru, “A low-Overhead Non-blocking Checkpointing Algorithm for Mobile

Computing Environment”, LNCS 3947, pp. 597-608,

mailto:editor@ijermt.org

